Convergence Time towards Periodic Orbits in Discrete Dynamical Systems

نویسندگان

  • Jesús San Martín
  • Mason A. Porter
چکیده

We investigate the convergence towards periodic orbits in discrete dynamical systems. We examine the probability that a randomly chosen point converges to a particular neighborhood of a periodic orbit in a fixed number of iterations, and we use linearized equations to examine the evolution near that neighborhood. The underlying idea is that points of stable periodic orbit are associated with intervals. We state and prove a theorem that details what regions of phase space are mapped into these intervals (once they are known) and how many iterations are required to get there. We also construct algorithms that allow our theoretical results to be implemented successfully in practice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting unstable periodic orbits in chaotic continuous-time dynamical systems.

We extend the recently developed method for detecting unstable periodic points of chaotic time-discrete dynamical systems to find unstable periodic orbits in time-continuous systems, given by a set of ordinary differential equations. This is achieved by the reduction of the continuous flow to a Poincaré map which is then searched for periodic points. The algorithm has global convergence propert...

متن کامل

On Periodic Orbits in Discrete-time Cascade Systems

Question. Does system (1.1) have periodic orbits when system (1.2) has periodic orbits? Recently, there have been a lot of researches in the literature on the periodicity of discrete-time dynamical systems [1, 3–8, 10, 11]. However, to the authors’ knowledge the above question has not received investigations, therefore in this paper we study the above question and obtain a fundamental result. O...

متن کامل

Analysing Dynamical Systems - Towards Computing Complete Lyapunov Functions

Ordinary differential equations arise in a variety of applications, including e.g. climate systems, and can exhibit complicated dynamical behaviour. Complete Lyapunov functions can capture this behaviour by dividing the phase space into the chain-recurrent set, determining the long-time behaviour, and the transient part, where solutions pass through. In this paper, we present an algorithm to co...

متن کامل

Iterative Robust Stabilization Algorithm for Periodic Orbits of Hybrid Dynamical Systems: Application to Bipedal Running ?

This paper presents a systematic numerical algorithm to design optimal H∞ continuous-time controllers to robustly stabilize periodic orbits for hybrid dynamical systems in the presence of discrete-time uncertainties. A parameterized set of closed-loop hybrid systems is assumed for which there exists a common periodic orbit. The algorithm is created based on an iterative sequence of optimization...

متن کامل

Interval Methods for Rigorous Investigations of periodic orbits

In this paper, we investigate the possibility of using interval arithmetic for rigorous investigations of periodic orbits in discrete-time dynamical systems with special emphasis on chaotic systems. We show that methods based on interval arithmetic when implemented properly are capable of finding all period-n cycles for considerable large n. We compare several interval methods for finding perio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014